

Compressed Air Filtration

FILTERS COALESCERS ABSORBERS ELEMENTS MIST ELIMINATORS

User Benefits

BOOST QUALITY AND PRODUCTIVITY

- Purify the compressed air by eliminating oil/dust contaminants
- Higher final product quality
- Increase your overall productivity

SAVE COSTS

- Prolong the life span of your operation process (machine/equipment...)
- Reduce potential downtime
- Annual service intervals to ensure optimal operations

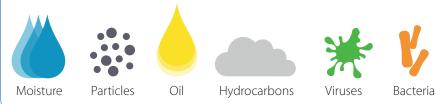
EASY OPERATION AND INSTALLATION

- Compatible with any compressor technology
- Can be installed quickly and into an existing network
- Optional pressure drop device
 (indicator/gauge) to advise on the
 cartridge replacement
- Cartridge replacement done in no time
- No electrical supply needed

Risks You Avoid

IMPURITIES IN THE COM-PRESSED AIR CAN CAUSE:

- Damage to the distribution lines increasing the leakage risk
- A considerable increase in maintenance costs
- A reduction in the efficiency and life span of the pneumatic devices
- Deterioration of the final product quality
- Limitations to the reliability of the production process and all its components
- Decrease of the overall profitability


HOW CLEAN IS YOUR COMPRESSED AIR?

Atmospheric air naturally contains several impurities such as dust, various forms of hydrocarbons and water in the form of humidity. Once sucked into the compressor, these are compressed and delivered down the line along with oily particles.

These polluting agents interact with each other and can generate abrasive and corrosive emulsions that can cause wear and corrosion in the downstream equipment.

Quality Air Solutions remove these contaminations from the compressed air.

PROTECT YOUR COMPRESSED AIR INSTALLATION AGAINST:

W QUINCY FILTERS KEEP YOUR AIR DISTRIBUTION NETWORK IN OPTIMAL SHAPE!

Quincy

Quinc

In any compressed air net distribution it is a must to install one or more filters. As a result, an improved air quality is achieved which benefits your complete compressed air network, including the downstream dryers, air pipes and pneumatic tools. It is recommended to filter your air in different stages by using two or three filters.

Using only a single filter could result in saturation of the filter and cause you to lose air pressure, suffer reduced air quality or end up prematurely replacing your elements.

IMPORTANT GUIDELINES

When selecting purification equipment for your compressed air system, these are some useful guidelines to consider.

	pending on the application, each point of use in the system may require a t compressed air quality.	
	sure that the purification equipment which is being chosen will actually provide the I air purity in accordance with the classifications from the ISO 8573-1:2010 table.	
	en comparing filters to one another, make sure they have been tested in ince with the standards of ISO 8573 and ISO 12500 series.	
	nenever you compare different filtration solutions, it is crucial to keep in mind that r performance is highly dependent on the inlet conditions.	
compare	en taking into account the operational cost of oil coalescence filters, only e the initial saturated wet pressure loss. The reason for this is that dry pressure loss presentative for performance in a normally wet compressed air system.	
	r dust filters on the other hand, one can expect the pressure drop to rise over time. arting pressure drop does not mean it will remain as such throughout the filter el- lifetime.	
	nsider the total cost of ownership for purification equipment (purchase, onal and maintenance costs).	

Your local sales representative can help you to select the optimal purifcation equipment for your compressed air system.

COMPRESSED AIR ACCORDING TO ISO 8573-1:2010

Depending on the customer's application, a certain air purity is required. These purity requirements have been categorized in air purity classes. The Purity classes are defined in the ISO 8573-1 standard, edition 2010.

		Solid particles		Wat	er	Total oil*
PURITY CLASS	nun	nber of particles per r	11 ³	Pressure c	dewpoint	Concentration
	0.1 - 0.5 µm	0.5 - 1.0 μm	1.0 - 5.0 μm	°C	°F	mg/m³
0		As specifie	ed by the equipment	user or supplier and mo	ore stringent than Clas	ss 1.
1	≤ 20,000	≤ 400	≤ 10	≤ -70	≤ - 94	≤ 0.01
2	≤ 400,000	≤ 6,000	≤ 100	≤ -40	≤ -40	≤ 0.1
3	-	≤ 90,000	≤ 1000	≤ -20	≤ -4	≤ 1
4	-	-	≤ 10,000	≤ 3	≤ 37.4	≤ 5
5	-	-	≤ 100,000	≤ 7	≤ 44.6	-
6		≤ 5 mg/m³		≤ 10	≤ 50	-

This table defines 7 purity classes ranging from 0 up to 6 following the rule: the lowr the class, the higher the air quality.

* Liquid, aerosol and vapour.

FILTER RANGE OVERVIEW

QMF FILTER RANGE

Micronic coalescing filters for general purpose protection, removing solid particles, liquid water and oil aerosol.

Total Mass Efficiency: 99 %

OPF FILTER RANGE

Particulate filters for dust protection. Removes solid particles, dust, liquid and oil aerosol.

Total Mass Efficiency: 90 % (MPPS = 0.1 micron)

>>> QCF FILTER RANGE

High-efficiency coalescing filters, removing solid particles, liquid water an oil aerosol.

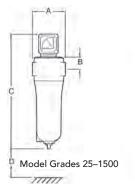
QAF FILTER RANGE

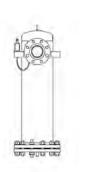
Activated carbon filter for removal of oil vapour an hydrocarbon odors with a maximum remaining oil content of 0,003 mg/m³ (0,003 ppm).

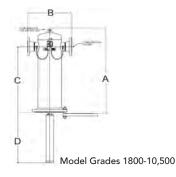
1000 Hour Lifetime

The quality of air required throughout a typical compressed air system varies. Offering an extensive filter range, Quincy Compressor can always match your precise requirements, ensuring that all types of contamination are avoided and costs are reduced to an absolute minimum.

	QMF	QCF	QPF	QAF
Filter Type	Oil aerosol & solid particles	Oil aerosol & solid particles	Oil aerosol & solid particles	Oil vapor
Test Method	ISO 12500-1 ISO 8573-2	ISO 12500-1 ISO 8573-2	ISO 12500-1 ISO 12500-3 ISO 8573-2	ISO 8573-5
Inlet: Off Concentration (mg/m ³)	10	10	10	0.01
Count Efficiency (% at MPPS) **	NA	NA	(MPPS = 0.01 µm) 89.45	NA
Count Efficiency (% at 1 μm)	NA	NA	94.19	NA
Count Efficiency (% at 0.01 μm)	NA	NA	93.63	NA
Max Oil Carry-Over (mg/m ³)	0.1	0.01	1	0.003
Dry Pressure Drop (mbar)	NA	NA	85	160
Wet Pressure Drop (mbar) *	205	240	115	NA
Wet Pressure Drop (mbar), in typical compressor installation	185	200	NA	NA
Element Service	After 4,000 operating hours or 1 year			
Precede with	Water separator	QMF		QMF & QCF


* Inlet oil concentration = 10 mg/m³ ** MPPS = Most Penetrating Particle Size


A SOLUTION FOR EVERY AIR QUALITY



>>> TECHNICAL TABLE

		rmal acity		mum sure	Connections/ Port thread	Dii	mensio	ns	Free space for cartridge replacement	Weight
						Α	В	С	D	
			bar	psi			inch	inch		lbs
Q_F 25	43	25	16	232	3/8"	3.6	1	9	3	2.2
Q_F 50	90	50	16	232	1/2"	3.6	1	9	3	2.4
Q_F 75	126	75	16	232	1/2"	3.6	1	9	3	2.9
Q_F 100	180	100	16	232	1"	4.3	1.1	11.9	3	4.2
Q_F 175	288	175	16	232	1"	4.3	1.1	11.9	3	4.6
Q_F 300	504	300	16	232	1 1/2"	5.5	1.3	11.7	3.9	9.3
Q_F 400	684	400	16	232	1 1/2"	5.5	1.3	20.9	3.9	9.9
Q_F 550	936	550	16	232	1 1/2"	5.5	1.3	20.9	3.9	10.1
Q_F 750	1296	750	16	232	2 1/2"	7.1	2	24.3	5.9	15.2
Q_F 1000	1890	1000	16	232	3"	8.3	2	28.3	7.9	24.3
Q_F 1500	2430	1500	16	232	3"	8.3	2	35	7.9	27.8

Reference condition: pressure 7 bar. (102 psi).

Maximum operating temperature of 151°F, and 95°F, only for QAF series.

Minimum operating temperature of 34°F

>>> ASME WELDED STEEL FILTERS

	Normal Capacity		mum sure	Connections	I	Dimension	S	Free space for cartridge replacement	Weight
					Α	В	С	D	
Q_F 1800	1800	10	150	4	42.4	20.1	33.3	25.8	311
Q_F 2400	2400	10	150	4	42.4	20.1	33.3	25.8	316
Q_F 3000	3000	10	150	6	46.8	24.4	35.4	26	363
Q_F 3800	3800	10	150	6	49.8	25.2	38.6	26	368
Q_F 4500	4500	10	150	6	49.8	25.2	38.6	26	392
Q_F 6000	6000	10	150	8	57	32.3	41.3	26	926
Q_F 8500	8500	10	150	8	57	32.3	41.3	26	944
Q_F 10500	10500	10	150	8	57	32.3	41.3	26	953

Inlet pressure (bar)	1	2	3	4	5	6	7	8	10	12	14	16
Inlet pressure (psig)	15	29	44	58	72.5	87	102	116	145	174	203	232
Correction factor	0.38	0.53	0.65	0.75	0.83	0.92	1	1.06	1.2	1.31	1.41	1.5

For other compressed air inlet pressures, multiply the filter capacity by the following correction factors

HIGH TEMPERATURES

>>> 1 MICRON DUST FILTERS, 450°F, 150 PSIG

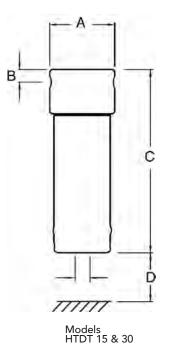
- Designed specifically for Heat Reactivated Desiccant Air Dryers
- Nomex outer layer is provided for high-temperature operation
- Push-to-fit design used on threaded filters for easy filter element replacement
- Multiwrap element construction provides optimum performance

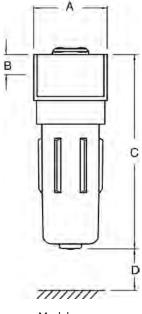
ALUMINUM HOUSING THREADED NPT CONNECTIONS 15 TO 650 CFM, SERIES HTDT

- Features a high-temperature dust filter with heavy-duty bowl
- Ribbed bowl facilitates removal when changing elements

NOTE: Alloy filters shipped loose will have a special high-temperature black powder coat paint.

SPECIFICATIONS & ENGINEERING DATA




Dust Filt	ers — ⁻	Threa	ded	Element	Number		Dimer	sions —			Metric						
Filter Model	Pipe Size NPT	Flow scfm	v Rate Nm³/hr	Model (Grade)	of Elements	A In.	B In.	C In.	D In.	Wei Ib.	ght kg.	A	B	C mm	D mm		
HTDT 15	1/4	15	25	HTDE 15	1	2%	1/2	6	2	0.5	0.25	63	15	150	50		
HTDT 30	3/8	30	50	HTDE 30	1	2½	1/2	7½	2	0.6	0.27	63	15	190	50		
HTDT 65	1/2	65	108	HTDE 65	1	4½	1½	12	6	5.7	2.60	114	38	305	150		
HTDT 75	3/4	75	125	HTDE 75	1	4½	1½	12	6	5.7	2.60	114	38	305	150		
HTDT 150	1	150	250	HTDE 150	1	4½	1½	15½	6	7.3	3.30	114	38	395	150		
HTDT 300	1½	300	500	HTDE 300	1	5¾	2	21	7	16.5	7.50	146	50	435	170		
HTDT 450	2	450	750	HTDE 450	1	5¾	2	21	7	16.5	7.50	146	50	435	170		
HTDT 650	2	650	1084	HTDE 650	1	5¾	2	25	7	22.0	10.00	146	50	635	170		

Specs Filter	Particle Removal	Oil Ca	ax. rryover at 20°C	Ma Tempe		Clear	n & Dry		ure Loss Vet		ange ment	Wor	ax. king sure	Element End Cap Color
Element	in Microns	ppm	mg/m³	۴F	°C	psi	mbar	psi	mbar	psi	mbar	psig	barg	Code
High-tem	perature du	ust filter	elemen	t arade									Ŭ	
HTDE	1	2	2	450	250	1.1	75	NA	NA	6	400	150	10	Brick Red

Correction	Factor				
Operating					725
Pressure Correction F	barg actor	10 0.34	20 0.57	40 0.86	50 1.0

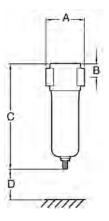
For maximum flow rate, multiply model flow rate shown in the above table by the correction factor corresponding to the working pressure.

Models HTDT 65–650

MECHANICAL MOISTURE SEPARATORS

>>> 20 TO 1500 CFM, 230 PSIG, SERIES WSNT

Quincy Mechanical Moisture Separators are designed to remove bulk liquids and large volumes of water. They are typically installed downstream of after coolers, air receivers, refrigerated air dryers and at strategic points of use throughout the compressed air distribution system. The design employs an internal spinner to create a centrifugal action that effectively removes large quantities of water.


- Large sump and quiet zone to prevent moisture re-entrainment
- Modular design allows for easy installation of multiple housings and saves energy
- Annular seal and captive O-ring prevent leaks
- Aluminum housings (1/4" to 3 NPT) feature electrophoretic coating to prevent corrosion
- Aluminum housings (1/4" to 3" NPT) carry a 10-year housing guarantee
- Standard automatic condensate drain

>>> SPECIFICATIONS & ENGINEERING DATA

Moi	sture	Separ	ators			Dime	ensions —					Metric Dimensions			
Filter	F	Pipe Size	Flow	Rate	А	В	С	D	Wei	ght	А	В	С	D	
WSN	Г 20	1/4	20	35	3	1¼	8¼	3	1.45	0.65	72	35	210	75	
WSN ⁻	Т 30	3/8	30	50	3	11/4	8¼	3	1.45	0.65	72	35	210	75	
WSN ⁻	Г 63	1/2	63	112	3½	1¼	8¼	4	2.90	1.30	88	32	210	100	
WSN ⁻	Г 127	3/4	127	216	5	1½	12	4	5.95	2.70	125	39	300	100	
WSN ⁻	Т 176	1	176	300	5	1½	12	4	5.95	2.70	125	39	300	100	
WSN ⁻	T 318	11/4	318	540	5	1½	12	4	5.95	2.70	125	39	300	100	
WSN	Г 427	1½	427	725	5½	2	19	6	9.70	4.40	135	50	480	150	
WSN ⁻	T 675	2	675	1150	5½	2	19	6	9.70	4.40	135	50	480	150	
WSN	T 1000	2½	1000	1700	8	2 ³ /4	24	8	25.5	11.5	200	68	590	200	
WSN	T 1500	3	1500	2550	8	2 ³ /4	24	8	25.5	11.5	200	68	590	200	

Specs Filter Model	Recom	ax. mended ng Temp. °C		Min. ommenc ating Te °(mp.	Press	ypical sure L ited F mb	low	Wo	lax. rking ssure ba		
WSNT	248 120		35	1.	.5	0.7	50)	232	16	5	
Correction	Factor											
Operating Pressure	psig 4 barg 0.3		9	,			44	58 4		72 5	87 6	100 7
Correction		0.21	0.29	0.38	0.5	3 0	.65	0.7	50	.84	0.92	1
Operating	psig	115	130	145	160	D 1	74	189	7 2	03	218	232
Pressure	barg	8	9	10	11		12	13		14	15	16
Correction	Factor	1.07	1.13	1.19	1.2	51	.31	1.3	51	.41	1.46	1.51
	um flow rate, multi factor correspondii							n the	abov	re ta	ble by t	he

HIGH-PRESSURE

>>> ALUMINUM FILTERS

Coalescer — Absorber

Quincy's aluminum alloy, 750 psig high pressure filter lineup offers an economic alternative to the high cost of stainless steel. There are two levels of coalescing and an activated carbon absorber. Ideally suited for the PET bottle blowing industry, the coalescers remove various levels of liquid aerosols and the activated carbon absorber removes vapor and odors.

- High-temperature capacity (250°F.)
- Multiwrap element construction for optimum performance and long life
- Synthetic lubricant and mineral oil compatibility
- Large sump and quiet zone to prevent re-entrainment
- Push-to-fit design for easy filter element replacement
- Modular design allows for easy installation of
- multiple filters and saves energy

750 PSIG/250°F

150 to 3000 scfm (¹/2" to 2" NPT)

- HSCT standard coalescer
- HPCT polishing coalescer
- HACT activated carbon

>>> STAINLESS STEEL FILTERS

Coalescer — Absorber

Quincy's line of 316 grade Stainless Steel filters for pressure requirements of 750 psig through 5000 psig feature:

- Three pressure ranges (750 psig, 1,500 psig, 5,000 psig)
- Heavy-duty, Stainless Steel tie rod design for 1500 psig and 5000 psig

750 PSIG/250°F

60 to 2000 scfm (1/2" to 2" NPT)

- SSCT standard coalescer
- SPCT polishing coalescer
- SACT activated carbon

1500 PSIG/250°F

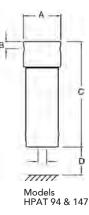
65 to 2050 scfm (¹/2" to 2" NPT)

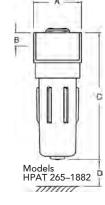
- ESCT standard coalescer
- EPCT polishing coalescer
- EACT activated carbon

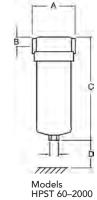
5000 PSIG/250°F

28 to 775 scfm (¹/2" to 1¹/2" NPT)

- VSCT standard coalescer
- VPCT polishing coalescer
- VACT activated carbon




HIGH-PRESSURE


>>> 750 PSIG - SPECIFICATIONS & ENGINEERING DATA

Aluminur	n, 750	psig		Element	Number		Dimen					Dimen	Met	ric	
Filter Model (Grade)	Pipe Size NPT	Flow scfm	/ Rate Nm³/hr	Model (Grade)	of Elements	A In.	B In.	C In.	D In.	Wei Ib.	ght kg.	A mm	B mm	C mm	D mm
Grade 94	1/4	94	160	H E 94	1	21/2	1/2	6	2	0.5	0.25	63	15	150	50
Grade 147	3/8	147	250	H E 14	7 1	2 ¹ / ₂	1/2	7 ¹ / ₂	2	0.6	0.27	63	15	190	50
Grade 265	1/2	265	450	HE 26	5 1	4 ¹ / ₂	1 ¹ / ₂	12	6	5.7	2.60	114	38	305	150
Grade 324	3/4	324	550	HE 32	4 1	4 ¹ / ₂	1 ¹ / ₂	12	6	5.7	2.60	114	38	305	150
Grade 492	1	492	835	H E 49	2 1	4 ¹ / ₂	1 ¹ / ₂	15 ¹ / ₂	6	7.3	3.30	114	38	395	150
Grade 1015	11/2	1015	1725	HE 10	15 1	5 ³ /4	2	21	7	16.5	7.50	146	50	435	170
Grade 1132	2	1132	1925	HE11	32 1	5 ³ /4	2	21	7	16.5	7.50	146	50	435	170
Grade 1882	2	1882	3200	HE 18	82 1	5 ³ /4	2	25	7	22.0	10.00	146	50	635	170

Specs Filter	Particle Removal	Oil Ca	lax. arryover at 20°C	Ma Tempe	erature	Clear	n & Dry		ure Loss Vet		ange ement	Woi	ax. rking ssure	Element End Cap Color
Element	in Microns	ppm	mg/m³	°F	°C	psi	mbar	psi	mbar	psi	mbar	psig	barg	Code
High-pre	ssure alumi	num filte	er eleme	nt grad	es, 750) psig								
HSCE	1	0.1	0.1	248	120	1.1	75	2.2	150	6	400	750	50	Black
HPCE	0.01	0.01	0.01	248	120	1.5	100	4.4	300	6	400	750	50	Black
HACE	0.01	0.003	0.003	77	25	1.1	75		_ see no	otes -		750	50	Black

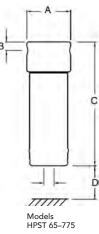
Stainless	Steel	750	osia											Me	tric	
Junicos	Steer,	/ 30	Jaig	Ele	ement	Number		Dimen	sions				Dimer	nsions		
Filter Model	Pipe Size	Flow	/ Rate	N	lodel	of	А	В	С	D	Wei	ght	А	В	С	D
(Grade)	NPT	scfm	Nm³/hr	(G	irade)	Elements	In.	In.	In.	ln.	lb.	kg.	mm	mm	mm	mm
Grade 60	1/4	60	100	S	E 60	1	31/2	3/4	7	3	3.80	1.70	85	18	170	75
Grade 120	³ /8	120	200	S	_E 120	1	3 ¹ / ₂	3/4	8	4	4.40	2.00	85	18	205	100
Grade 200	1/2	200	340	S_	_E 200	1	31/2	3/4	10	4	4.90	2.20	85	18	255	100
Grade 300	3/4	300	500	S	_E 300	1	4 ¹ / ₂	11/4	11	6	8.80	4.00	110	27	270	150
Grade 600	1	600	1000	S	E 600	1	$4^{1}/_{2}$	1 ¹ /4	17	12	11.0	5.00	110	27	420	300
Grade 1000	1 ¹ / ₂	1000	1700	S_	_E 100	0 1	6	1 ³ /4	21	12	33.0	15.0	150	45	525	300
Grade 1200	2	1200	2040	S	_E 120	0 1	6	1 ³ / ₄	21	12	33.0	15.0	150	45	525	300
Grade 2000	2	2000	3400	S	E 200	0 1	6	1 ³ /4	33	20	46.0	21.0	150	45	825	500

Specs Filter Element	Particle Removal in Microns	Oil Ca	lax. arryover at 20°C mg/m³	Ma Tempe °F	ax. erature °C	Clea	n & Dry mbar		ure Loss Vet mbar		ange ment mbar	Woi Pres	ax. rking ssure barg	Element End Cap Color Code
High-pre	ssure stainl	ess stee	l filter el	ement (arades	. 750 i	osia							
SSCE	1	0.1	0.1	248	120	1.1	75	2.2	150	10	700	750	50	Black
SPCE	0.01	0.01	0.01	248	120	1.5	100	4.4	300	10	700	750	50	Black
SACE	0.01	0.003	0.003	77	25	1.1	75 -		see no	otes —		750	50	Black

Fac	ctor	for Alu	minum					Correction	Factor	for Sta	inless S	iteel						
g	psig	145	290	435	580	725	(Operating	psig	58	87	116	145	220	290	435	580	
k	barg	10	20	30	40	50	F	Pressure	barg	4	6	8	10	15	20	30	40	
actor 0.34	0.34		0.57	0.71	0.86	1.0	(Correction F	actor	0.14	0.22	0.28	0.34	0.47	0.56	0.70	0.85	

For maximum flow rate, multiply model flow rate shown in the above table by the correction factor corresponding to the working pressure.

HIGH-PRESSURE


>>> 1500 & 5000 PSIG - SPECIFICATIONS & ENGINEERING DATA

Stainless S	Steel,	1500	psig		Number		Dimer	sions				Dimer	Met nsions	tric	
Filter Model F	Pipe Size	Flow	Rate	Element Mod	el of	А	В	С	D	Wei	ght	А	В	С	D
(Grade)	NPT	scfm	Nm³/hr	(Grade)	Elements	ln.	ln.	In.	ln.	lb.	kg.	mm	mm	mm	mm
High-pressur	re stainl	ess ste	el filte	r element gr	ades, 150	0 psig									
Grade 65	1/4	65	110	EE 65	1	2 ³ /4	3/4	6	3	7.10	3.20	65	20	135	70
Grade 185	³ /8	185	315	EE 185	5 1	2 ³ /4	3/4	10	7	12.3	5.60	65	20	250	180
Grade 270	1/2	270	460	E E 270) 1	3 ¹ / ₂	3/4	11	10	13.5	6.10	88	20	275	250
Grade 400	3/4	400	680	E E 400) 1	5 ¹ /8	1	11	6	23.2	10.5	132	26	265	150
Grade 700	1	700	1200	EE 700) 1	5 ¹ /8	1	19	12	32.4	14.7	132	26	480	300
Grade 1050	1 ¹ / ₂	1050	1785	E E 105	50 1	6	1 ³ /4	21	12	48.5	22.0	150	45	525	300
Grade 2050	2	2050	3485	E E 205	50 1	6	1 ³ /4	33	20	61.7	28.0	150	45	825	500

Specs Filter Element	Particle Removal in Microns	Oil Ca	lax. arryover at 20°C mg/m³	Ma Tempe °F		Clear psi	n & Dry mbar		ure Loss Vet mbar		ange ment mbar	Pres	ax. king sure barg	Element End Cap Color Code
High-pre	ssure stainl	ess stee	l filter el	ement	grades,	1500	psig							
ESCE	1	0.1	0.1	248	120	1.1	75	2.2	150	6	400	1500	100	Black
EPCE	0.01	0.01	0.01	248	120	1.5	100	4.4	300	6	400	1500	100	Black
EACE	0.01	0.003	0.003	77	25	1.1	75		see no	otes		1500	100	Black

Stainless	steel,	3000	psig		Number		Dimen	sions				Dimer	isions		
Filter Model	Pipe Size	Flow	/ Rate	Element Mode	el of	А	В	С	D	Wei	ght	А	В	С	D
(Grade)	NPT	scfm	Nm³/hr	(Grade)	Elements	ln.	ln.	In.	ln.	lb.	kg.	mm	mm	mm	mr
High-press	ure stain	ess ste	el filte	r element gra	ades, 500	0 psig									
Grade 28	1/4	28	48	VE 28	1	13/4	1/2	4	3	3.50	1.60	41	10	103	60
Grade 67	³ /8	67	111	V_E 67	1	2 ³ /4	3/4	6	3	7.10	3.20	65	20	135	70
Grade 150	1/2	150	255	V E 150	1	3 ¹ / ₂	3/4	9	6	12.3	5.60	88	20	210	15
Grade 310	3/4	310	520	V E 310	1	3 ¹ / ₂	1	11	10	13.5	6.10	88	25	280	25
Grade 445	1	445	750	V E 445	1	6	11/2	13	8	32.0	14.5	150	35	330	20
Grade 775	11/2	775	1330	V E 775	1	6	11/2	19	12	38.4	17.4	150	35	180	30

Specs	Particle		lax. Irryover	Ma	ıx.			Press	ure Loss	Ch	ange		ax. rking	Element End Cap
Filter Element	Removal in Microns		at 20°C mg/m³			Clear psi	n & Dry mbar	V psi	Vet mbar		ment mbar		ssure barg	Color Code
High-pre	ssure stainle	ess stee	filter el	ement o	grades	, 5000	psig							
High-pre VSCE	ssure stainle 1	ess steel 0.1	0.1	ement g 248	grades, 120	, 5000	psig 75	2.2	150	10	700	5000	350	Black
• •	ssure stainle 1 0.01							2.2 4.4	150 300	10 10	700 700	5000 5000	350 350	Black Black

Quincy

Correction I	Factor	for Sta	inless S	iteel, 1	500 ps	ig				
Operating Pressure Correction Fa	barg	20	30	40	50	60	70	80	90	100

Correction	Factor	for Sta	inless S	iteel, 5	000 ps	ig		
Operating Pressure Correction F	barg	50	100	150	200	250	300	350

For maximum flow rate, multiply model flow rate shown in the above table by the correction factor corresponding to the working pressure.

MIST ELIMINATOR

>>> HIGH EFFICIENCY HEAVY-DUTY COALESCING FILTER

LONG LIFE AND LOW PRESSURE DROP

The Quincy Mist Eliminator is a heavy-duty coalescing type filter engineered to efficiently remove oil, particulate, and water from compressed air. By using a combination of impaction, interception and Brownian Movement, the Quincy Mist Eliminator achieves 100% efficiency in removing particles 3 micron and larger, 99.98% of 0.1 micron and larger and 99.5% of 0.01 micron and larger. Typical pressure drop is less than 1 psig. Average element life in continuous service is 10 years. A 10-year element life can be achieved in relatively clean environments.

- Lower pressure drop compared to conventional coalescing and particulate filters (average 1 psig versus 6 psig). Higher pressure drops require the compressor to operate at an elevated pressure, therefore requiring more power. Every 2 psig reduction in pressure saves approximately 1% air compressor power based on 100 psig operating pressure. Quincy Mist Eliminator could easily save in excess of \$3,000 per year in air compressor electrical energy (based on 8,000 hours per year operation, \$0.07 per Kw hour, 100 hp compressor and a 93% motor efficiency).
- Large tank volume captures and retains inadvertent lubricant discharge caused by compressor separation system malfunction, which protects downstream equipment.
- Average element life of 10 years versus 6 months for conventional coalescing and particulate filter elements reduces maintenance and waste disposal.

Calibrated Differential Pressure Gauge is standard equipment

MIST ELIMINATOR

>>> SPECIFICATIONS & ENGINEERING DATA

Mist Elimi	nator scfm @	Max	— Dimens Diameter	ions R em c Height	Min. Filter oval Clearance*	Flanged Approx	In/Out Drain Connections	Connections
Model	100 psig	psig	ln.	In.	ln.	Wt. lb.	ln.	ln.
ME 250S	250	150	14	45 ¹ /8	22	471	1 ¹ / ₂	1 NPT
ME 500S	500	150	14	58 ¹ /8	35	518	2	1 NPT
ME 800S	800	150	14	73 ¹ /4	50	586	2 ¹ / ₂	1 NPT
ME 1100S	1100	150	16	78 ¹ / ₂	55 ¹ /8	664	3	1 NPT
ME 1500TP	1500	150	18	697/8	45 ³ /8	805	4	1 NPT
ME 1900TP	1900	150	18	747/8	50 ³ /8	965	4	1 NPT
ME 2500TP	2500	150	18	867/8	62 ³ /8	860	5	1 NPT
ME 3500TP	3500	150	24	8611/16	597/8	1400	5	1 NPT
ME 4500TP	4500	150	24	99 ³ / ₄	72 ⁷ /8	1517	6	1 NPT
ME 5000TP	5000	150	24	105 ³ /4	78 ⁷ /8	1564	6	1 NPT
ME 6000TP	6000	150	24	1207/8	93 ⁷ /8	1726	8	1 NPT
ME 7000TP	7000	150	30	108 ³ /8	80 ¹ / ₈	2450	8	1 ¹ / ₂ NPT
ME 8000TP	8000	150	30	116 ³ /8	88 ¹ /8	2520	8	1 ¹ / ₂ NPT
ME 9000TP	9000	150	30	124 ³ /8	96 ¹ /8	2603	8	1 ¹ / ₂ NPT
ME 10000TP	10000	150	36	118 ³ /16	<mark>88⁵/</mark> ଃ	3640	10	1 ¹ / ₂ NPT
ME 15000TP	15000	150	42	13211/16	1007/8	CF	10	11/2 NPT

Notes: Larger Sizes Available Consult Factory * Does Not Include Rigging.

A Pneumatic No-Loss Demand Drain is optional equipment

UNIQUE DOUBLE ELEMENT DESIGN

1,500 cfm through 15,000 cfm models utilize a space-saving double element design (see Figure 2). Using a double nesting technique, the Quincy Mist Eliminator offers high efficiency separation in a low profile package. By nesting an element inside an element, total surface area is greater than conventional single element designs. Due to reduced overall height, the Quincy Mist Eliminator can be installed in locations where conventional single element designs cannot. For example, a 10,000 cfm Quincy Mist Eliminator low profile design is only 118 inches tall. Compare this to other single element designs that are 210 inches tall. That's a reduction of over 7 feet in overall height! Imagine the savings in time and convenience when you change the element or service the unit.

All Quincy Mist Eliminator tanks are ASME coded and stamped. Standard equipment includes a calibrated differential pressure gauge and enamel paint. No Loss Demand Drains are optional. Pressure relief valves are not included but may be required by local codes.

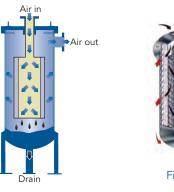


Figure 2

Figure 1

COMPRESSED AIR FILTERS

W QUINCY COMPRESSOR AIR QUALITY PERFORMANCE GUARANTEE

- Quincy Compressor offers a performance guarantee on its Air Treatment Filtration line. Quincy's Filters are guaranteed to perform to the currently published specifications as found in filtration documentation available at www.quincycompressor.com/literature_library.html.
- Under normal operating conditions, and when installed in an original installation, the Quincy QCF, QMF, and QPF filter elements meet or exceed air quality standards of ISO 8573. The Quincy filters are guaranteed to operate for 6,000 hours or 12 months, whichever shall occur first, before reaching the recommended 6 PSIG pressure differential for filter replacement.
- Quincy Compressor guarantees that the aforementioned filters will perform as stated above, or Quincy Compressor will either repair or replace the filter or element, at Quincy's discretion. Quincy Compressor will not be responsible for removal, reinstallation and/or related costs.

The Air Quality Performance Guarantee is in accordance and established based upon Air Quality-ISO 8573 standard for oil-free and contaminant-free compressed air applications. The Air Quality Performance Guarantee remains in effect for the below listed site so far as all installation and maintenance requirements set forth and in accordance with the warranty and policies and procedures handbook, under Section 1 General Information; Warranty Coverage Rules, are maintained.

COMPRESSED AIR FILTERS

>>> THE QUINCY PROMISE

Quincy Compressor and its partnering distributors promise to provide you with uncompromising reliability in all Quincy equipment. This makes your compressed air system one less thing that you need to worry about, allowing you to focus on your company's productivity and profitability.

>>> THE QUINCY SOLUTION

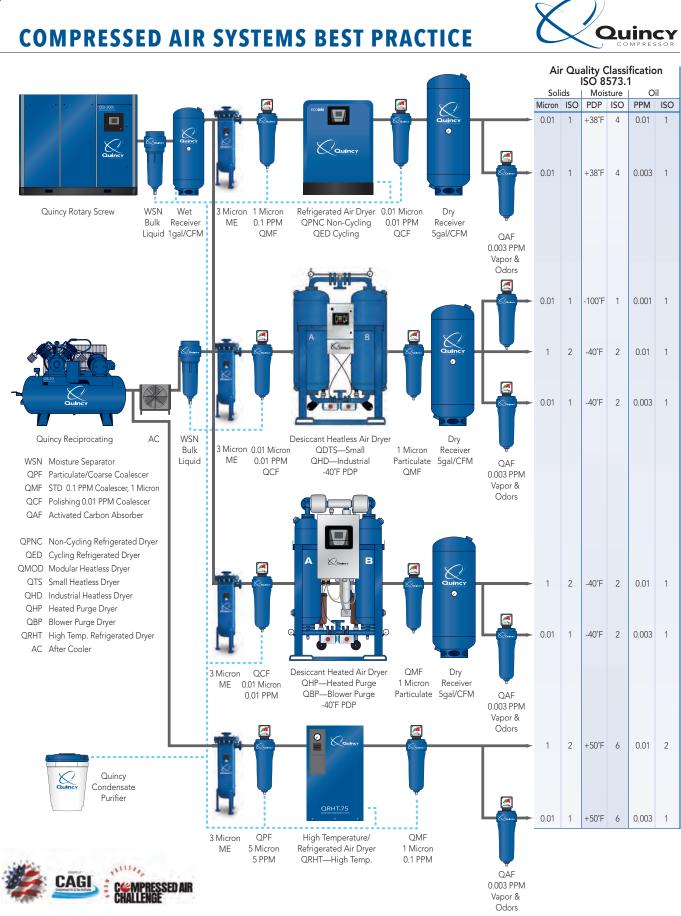
Operating at peak efficiency and providing quality product is a priority for many of our customers. Quincy Compressor in partnership with our global network of authorized distributors strives to be your provider for all of your compressed air system needs. From the air compressor to filtration to dryers and storage solutions, Quincy Compressor is your single source provider for all of your compressed air system needs.

AIR COMPRESSORS

Quincy Compressor is a premier provider of many different types of air compressors designed for a variety of applications using different compression technologies.

The **Quincy QT** is a Reciprocating Splash Lubricated compressor for tough everyday use. The **Quincy QP** is a reciprocating fully pressure lubricated compressor for a competitive advantage. The **Quincy QR** is a reciprocating compressor designed for the most demanding conditions. The **Quincy QGS 5-30 HP** is a heavy-duty belt driven rotary compressor at a competitive price. The **Quincy QSI** provides an industrial grade premium fixed speed rotary screw air compressor. The **Quincy QGV** provides a premium variable speed rotary screw air compressor designed to optimize your energy efficiency.

COMPRESSED AIR TREATMENT


Quincy Compressor is your single-source provider of compressed air treatment products to complement your air compressor. Quincy provides refrigerated air dryers, desiccant air dryers, compressed air filtration from 5 to .01 micron, condensate drains, condensate management systems, storage solutions, and flow control valves. Quincy Compressor is truly a single-source provider for all of your compressed air needs.

GENUINE PARTS

Genuine Parts from Quincy Compressor keep your equipment running like new. When servicing your Quincy compressor, insist on Genuine Quincy parts. Not only will you save time and money, but you will gain the peace-of-mind from using only the highest quality parts worthy of the Quincy name.

SYSTEM CONTROLS

Whether you have one air compressor or many air compressors from many different manufacturers, Quincy Compressor provides you with a way to control and monitor all of the components in your compressed air system in a way that maximizes your energy efficiency and decreases your energy costs. Whether you need to control your system on site or from half way around the world, Quincy Compressor is your source for reliable, efficient controls.

©2014 Quincy Compressor. All rights reserved. Printed in U.S.A. (QATF-008 11/14)